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Abstract� The camera registration extracted from feature based stereo
is usually considered su�cient to accurately localize the 	D points� How�
ever� for natural scenes the feature localization is not as precise as in
man�made environments� This results in small camera registration er�
rors� We show that even very small registration errors result in large
errors in dense surface reconstruction�
We describe a method for registering entire images to the inaccurate
surface model� This gives small� but crucially important improvements
to the camera parameters� The new registration gives dramatically better
dense surface reconstruction�

� Introduction

The goal of surface recovery is to take a set of images and estimate the positions
and orientations of the cameras that produced the images� and a representation
of the surface that was imaged� This is an example of an inverse problem� The
forward �or direct� problem is� given a surface and the position and orientation
of a camera� what is the expected image� This is the area of computer graphics
known as rendering ��	� The inverse problem is� given a set of images� estimate the
position and orientation of the cameras� and the shape and re
ectance properties
of the surface� That is� estimate a generative model ��� �	�
The conventional feature based approach to �D surface reconstruction takes

a sparse set of corresponding feature points from which the positions and ori
entations of the cameras are estimated� The quality of the camera calibration
crucially depends on well localized features� Feature tracking in a sequence of
images with small frame to frame disparity has been demonstrated successfully�
The two main concerns are the robustness and the accuracy of such an approach�
Robustness is usually improved by tracking across a sequence with small inter
frame displacements� but for many applications this cannot be assured� A further
concern is that the overall accuracy of the reconstructed �D model from a sparse
point could is rather doubtful and prior knowledge is not easily incorporated in
the conventional reconstruction scheme�
We show that a robust and accurate reconstruction scheme that can incor

porate any prior knowledge can be implemented by applying Bayesian inference
of the underlying model space� We postulate models for the surface and for the
imaging process� and Bayes theorem tell us how to estimate the parameters of
these models from the image data� We show that this approach allows us to make



small but crucially important improvements to the camera parameters estimated
from point matching� These improvements result in a dramatic improvement in
the accuracy of the �D surface model�

In this paper we restrict our reconstruction to simple surface models �no
occluding parts�� therefore we use a simple triangulated mesh model for the
geometry of the surface� storing heights� z� at each vertex of the mesh� We also
associate a parameterized re
ectance model with the surface� For simplicity here
we consider the Lambertian model� and store a single albedo value� � at each
vertex� �For multispectral data we store an array of albedo values� one for each
spectral band��

We use the standard pinhole camera model for the image formation process
��	� and assume that the internal camera parameters are known� �See� for ex
ample� ���	 for a simple method of internal camera calibration�� The theoretical
development of our approach can be generalized to other imaging geometries
and surface re
ectance models�

The closest work to that described here is in ��� �	� That work also used a
triangulated mesh as the surface representation� The cost function they used is
based on minimising the variance of the grey levels of the vertices� projection into
the images� rather than the direct image error that is used here� The approach in
��� �	 is thus restricted to triangulated meshes that are coarse when projected into
the images� The approach described here places no restrictions on the density of
the mesh� which may be superresolved ��	� The system in ��� �	 is also restricted
to cases wher the lighting was from the same direction in all images� Here we
require only that the lighting direction is known�

Thus we wish to infer the heights� z� the albedos� � and the camera parame
ters� �� from the images� Bayes theorem gives

p�z� �� �jfIg� � p�fIgjz� �� ��p�z� �� �� ���

We assume that the priors are independent� so that

p�z� �� �� � p�z�p���p���

and currently we use a simple smoothness prior for z and � based on penalizing
curvature� and a uniform prior on �� These initial prior assumptions are made for
the sake of simplicity� and are not fundamental to the approach �see below�� The
likelihood is assumed to result from Gaussian errors between the image �I�z� �� ��
synthesized from the surface model and the observed images fIg� giving

p�fIgjz� �� �� � exp
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where the sum is over all pixels� p in all images� If � The surface parameters� z�
�� are clearly shared between all images� Each image has its own set of camera
parameters� �f �



The function �I�z� �� �� is the process of rendering the surface described by
fz� �g with the camera location and orientation given by �� This is clearly non
linear� and makes optimization of the posterior distribution in equation � dif
�cult� To make progress in �nding the maximum aposteriori �MAP� estimate�
we linearize the image formation process about the current estimate�

�I�z� �� �� � �I�u�� �Dx ���

where u � fz� �� �g� x � u� u� and

D �

�
� �I

�z
�
� �I

��
�
� �I

��

�

If we use a Gaussian smoothness prior with covariance matrix � as described
above then the linearization converts �nding the MAP estimate to the minimiza
tion of a quadratic form

L �
�

�
xTAx� bx ���

A � ��� �
�

��e
DDT ���

b �
I � �I�z� �� ��

��e
D ���

which is equivalent to the solution of the system of equations

Ax � b ���

Note that for this linearization to proceed� the only restriction on the smooth
ness prior is that it can be expressed as a covariance matrix� This makes no
assumption of spatial uniformity� indeed the prior can easily be made spatially
adaptive� to allow for the formation of discontinuities in the heights and albedos�
Consider the structure of this system of equations� The matrix of derivatives

D is of dimensions

�no� of pixels�� �no� of heights � no� of albedos �

no� of camera parameters� ���

or� for the results presented later

����� ����� ����� ���� ���� ��� � ��

The portion of this matrix that is due to the di�erentials with respect to z and
� is very sparse� as typically each mesh vertex is used by a few of the triangles
that make up the surface� and these triangles project into only a few pixels�
The portion due to the di�erentials with respect to the camera parameters is�
however� dense� as changing any one of the camera parameters typically a�ects



the intensities of all the pixels in the image� As a result of this�DDT and henceA
are very large �around ����� �������� ���� and dense �around ������ elements��
It is clearly impractical to perform joint estimation in this manner� Instead we
estimate alternately the camera parameters and the surface parameters� that is

given �� estimate fz� �g

given fz� �g� estimate � ���

In this way we compute either with a very large� but very sparse matrix when
estimating z and �� or with a very small� dense matrix when estimating �� The
estimates are made by using conjugate gradient to solve equation � in an iterative
manner� At convergence� we update the current estimate� u� � u��x� rerender
to compute new values of �I�z� �� �� and D� and repeat the solution of equation
� until a stable solution is reached� This optimization process can be applied in
a multiresolution framework� to both accelerate and improve convergence�
This requires an initialization for either � or fz� �g� We use initial values

for � from point matching a very small number of points� or from nominal
camera position and orientations� if they are known �eg from rover or aircraft
deadreckoning�� In the experiments described later� point matching was used�
The remainder of the paper is organized as follows� In section � and � we

describe the basic rendering algorithm for a renderer which e�ciently computes
the images and calculates the derivative values used for the conjugate gradient
search outlined in section �� Results and Conclusions are given in sections � and
�

� The Fractional Derivative Renderer

As we have seen� to solve the inverse problem we must be able to simulate
the forward problem� to compute �I�z� �� ��� ��rendering��� Current rendering
technology uses �image space� computation� where the fundamental unit is the
pixel� Each pixel is assumed to be illuminated by light from one� and only one�
triangular facet� This assumption makes for very fast rendering� but results in
aliasing artefacts� It also makes the rendering process nondi�erentiable�
To enable a renderer to also compute derivatives it is necessary that all

computations are done in �object space�� This implies that the light from a
surface triangle� as it is projected into a pixel� contributes to the brightness of
that pixel with a weight proportional to the fraction of the area of the triangle
which projects into that pixel� The total brightness of the pixel is thus the sum
of the contributions from all the triangles whose projections overlaps with the
pixel

�Ip �
X
�

fp
�
��� ����

where fp
�
is the fraction of the 
ux from triangle � that falls into pixel p� given

by

fp
�
�
�Apolygon
�A�

� ����
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Fig� �� Geometry of the triangular facet� illumination direction and viewing direction�
zs is the vector to the illumination source� zv is the viewing direction�

where �A denotes projected area� and �� is the total 
ux from the triangle� and
�apolygon is the area on the image plane of the intersection of the projection of
the triangle and the pixel� In the case of Lambertian re
ection� this is given by

�� � �E�	s� cos	v �cos 
����� ����

E�	s� � A �Is cos	s � Ia� 

�� � S�d�

Here � is an average albedo of the triangular facet� Orientation angles 	s and
	v are de�ned in �gure �� E�	s� is the total radiation 
ux incident on the
triangular facet with areaA� This 
ux is modeled as a sum of two terms� The �rst
term corresponds to direct radiation with intensity Is from the light source at
in�nity �commonly the sun�� The second term corresponds to ambient light with
intensity Ia� The parameter 
 in equation ���� is the angle between the camera
axis and the viewing direction �the vector from the surface to the camera�� �
is the lens fallo� factor� �� in ���� is the solid angle subtended by the camera
which is determined by the area of the lens S and the distance d from the centroid
of the triangular facet to the camera� If shadows are present on the surface the
situation is somewhat more complex� In this paper we assume that there are no
shadows or occlusions present in the images� However the presence of shadows
and occlusions� whilst making more complex the computation of the image ���
�	 and its derivatives� should lead to a more precise and robust surface estimate�
as long�range correlations are incorporated into the estimation�
The overall complexity of the rendering procedure and derivative calculation

procedure scales as

C �  images� triangles�
pixel area

triangle area
 ����

This can be seen from the algorithmic outline of the rendering step�



loop over images

loop over surface triangles

loop over affected pixels

calculate fractions and derivatives

calculate light contribution and

derivatives

pixelintensity �� light � fractions

end

end

end

Where the fractions are those in equation ��� The corresponding derivatives
are e�ciently calculated as shown in the next section�

� E�cient Derivative Computation

To compute the MAP estimates of fz� �g and � we must compute both the
image �I�z� �� �� and the derivative matrices Dz� D� and D��
The derivatives with respect to the albedo values can easily be derived from

equations �� and ��� Note that because � � � � �� in practice� we work with
transformed albedo values� where �� log������ ����
Denoting by u the component of z or � that we are currently considering�

the pixel intensity derivatives with respect to u have two components

� �Ip
�u

�
X
�

�
fp
�

���
�u

� ��
�fp

�

�u

	
����

The �rst component is due to changes in angle ! as the height of a vertex changes�
the normal to the facet changes� and so the derivative has a component due to the
change in angle between the normal and the sun direction� as the camera changes
position� the angle between the normal and the ray to the camera changes�
Consider �rst ������i� We neglect the derivatives with respect to the fall

o� angle� 
� as their contribution will be small� and so it is clear from equation
�� that the derivative with respect to any of the camera orientation angles is
zero�
The derivative with respect to the camera position parameters is given by

���
��i

�
�

��i

cos	v ����

�
�n

v
��zi � �zv��zv �zi��

where v is the vector from the triangle to the camera� v � jvj� �i are the three
components of the camera position� �zi are unit vectors in the three coordinate
directions and �zv � v�v �see �gure ��� �n is the normal to the triangular facet�



Consider now the derivative with respect to the height of one of the mesh
vertices� zi� The 
ux derivative� ����zi� can be computed directly from the
coordinates of the triangle vertices and the camera position using equation ���
For the surface triangle with vertices �Pi� �Pi� �Pi�� the 
ux derivative with
respect to the z component of the vertex Pi� equals

��

�zi�
�
�

�
��Pi� �Pi��� �z � g

S

d�
� ����

where
g � Is��zv cos	s � �zs cos	v � �n cos	s cos	v� � Ia�zv

and �z is a unit normal in the vertical direction�
For a triangle that projects entirely within a pixel� this completes the deriva

tive computation ! the second term in equation �� is the derivative of the frac�

tional area of the triangle that projects into the pixel�

��� Fractional Area Derivatives

When the height of a vertex� z� changes� its projection on the image plane� �P�
also moves� by � �P� This gives rise to a change � �A� in the area of the projection
of the triangle� and also the change �Apolygon in the polygon area� It follows from
equation �� that

�fp
�

�zi�
�

�
�A�

�
� �Apolygon

� �Pi�

� fp
�

� �A�
� �Pi�

	
� �Pi�

�zi�
 ����

where the point displacement derivative � �Pi���zi� can be found in ���	�
However� when the camera parameters change� the positions of the projec

tions of all the mesh vertices into the image plane will move� Then the the
derivative of the fractional area is simply a sum of all three position changes and
is given by

�fp
�

��i

�
�
�A�

X
j�i��i��i�

�
� �Apolygon

� �Pj

� fp
�

� �A�
� �Pj

	
� �Pj

��i

 ����

The point displacement derivatives are again in ���	�
Thus� the task of computing the derivative of the area fraction given in equa

tion �� is reduced to the computation of � �A��� �Pj and � �Apolygon��
�Pj� Note

that the intersection of a triangle and a pixel for a rectangular pixel boundary
can� in general� be a polygon with � to � edges with various possible forms�
However the algorithm for computing the polygon area derivatives that we have
developed is general� and does not depend on a particular polygon con�guration�
The main idea of the algorithm can be described as follows� Consider� as an ex
ample� the polygon shown in �gure � which is a part of the projected surface
triangle with indices i�� i�� i�� We are interested in the derivative of the polygon



Pi0

Pi2

δP

Pi1

K

L

J

p
ix

el
 b

ou
n

d
ar

y

I

Fig� �� The intersection of the projection of a triangular surface element �i�� i�� i�� onto
the pixel plane with the pixel boundaries� Bold lines corresponds to the edges of the
polygon resulting from the intersection� Dashed lines correspond to the new positions
of the triangle edges when point Pi�

is displaced by �P

area with respect to the point �Pi� that connects two edges of the projected tri
angle� �Pi� �Pi�� and �Pi� �Pi��� These triangular edges contain segments �I� J�
and �K� L� that are sides of the corresponding polygon� It can be seen from
�gure � that when the point �Pi� is displaced by � �Pi� the change in the polygon
area is given by the sum of two terms

� �Apolygon � �AI�J � �AK�L

These terms are equal to the areas spanned by the two corresponding segments
taken with appropriate signs� Therefore the polygon area derivative with respect
to the triangle vertex �Pi� is represented as a sum of the two �segment area�
derivatives for the two segments adjacent to a given vertex� Using straightforward
geometrical arguments one can calculate the areas �AI�J and �AK�L to �rst order
in the displacement ��Pi� � Then the polygon area derivative can be written in
the following form�

� �Apolygon

� �Pi�

�
�

�
�� �W� �� �



� �
�� �

�
����

The unit antisymmetric matrix �� performs a ��� rotation in the image plane
and vectorW equals

W �
�
��� R�

I��R�

J

 �
�Pi� � �Pi�

�
�
�
���R�

K��R�

L

 �
�Pi� � �Pi�

�
 ����



The ratio factors R determine the positions of the intersection points I�J�K�L
on the edges of the triangle �see �gure ���
Equations �� and �� are the central result of the area fraction derivative com
putation� It is given for the general case of trianglepixel intersection where two
edges of triangle adjacent to the vertex Pi� each have two intersection points�
Note that pairs of intersection points� I�J and K�L are de�ned in a unique way
if one considers the triangle edges in counterclockwise order� Therefore equations
�� �� can be applied to all possible intersection cases� For example� assume that
all three triangle vertices are projected inside the pixel� In this case intersection
point K has merged with Pi� � points L and I have merged with Pi� and J with
Pi� � Then in equation �� we should put

RK � RL � RI � RJ � � ����

In this case polygon area derivative in equation �� is reduced to the derivative
of the full area of the projected triangle

�A�
�

� �Pi�

�
�

�
�� � �Pi� �Pi��  ����

The general rule for computing the ratio factors RI�J�K�L can be formulated
as follows�

� If point Pi� lies inside of the pixel one should set in equation �� ratio factors
RL � � and RI � ��

� If point Pi� lies inside of the pixel then one sets RK � ��
� If Pi� lies inside then RJ � ��

This describes all possible intersection cases and provides a full description for
the area fraction derivative �����
Further details of the derivative computation� together with full details of

the point displacement derivatives� can be found in ���	�

� Results

We present here the results of applying our methodology� We will demonstrate
our contention that the small improvements made by our registration method
to the camera parameter estimates results in large improvements to the quality
of the inferred surface�
Figure � shows four synthetic images of a region of Duckwater� Nevada� They

were generated by rendering a synthetic surface� The surface was constructed by
using the USGS Digital Elevation Model for the heights� and using the scaled
intensities of a LANDSATTM image as surrogate albedos� The size of the sur
face is ���� ��� points� The distance between grid points was taken to be one
unit� and the heights scaled appropriately� Figure � shows a perspective view of
the surface with expanded vertical scale� Table � gives the camera parameters
that were used to generate the images�



Fig� �� Four synthetic images of Duckwater� Nevada

An initial estimate of the camera parameters was made by using point match
ing ���	� We have found that the Harris corner detector ���	 typically used to
select features does not �nd many reliable features in the types of natural scenery
we are concerned with here� Table � gives the parameters estimated by matching
�ve points across the four images� Note that these camera parameter estimates
appear accurate� with the major error being in the orientation angle �viewup
vector��
Using these estimated camera parameters� a dense surface estimate can be

made� For space reasons we do not show the surface estimate� instead� in �gure
� we show the error surface� and a cross section in �gure �� The main points to
note are that

�� the small inaccuracies in the camera parameter estimation have resulted in
an erroneous slope in the surface estimate�

�� the overall height of the surface is shifted upwards� but note that the overall
shift is a small percentage �less than ��"� of the distance from the surface
to the cameras� The overall height is only weakly determined�

�� the albedo estimates are in general quite good �the RMSE for the albedo
estimate is �������

Using the gradientbased� whole image� approach to camera calibration to
a surface� that we have described above� we then registered the images to the
surface estimate� Using the new camera parameters� we reestimated the surface�
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Fig� �� True surface

This was iterated three times� On a ���GHz Athlon PC� rendering and computing
the derivative matrix takes less than � seconds per image� Convergence of the
Conjugate Gradient for updating the surface estimate is achieved in around ���
seconds� and for updating the camera parameters in less than a second� Table �
gives the �nal camera parameters� and �gure � shows the �nal surface estimate�
Again� note that the improvements to the registration parameters are small� but
�gures � and � show that these small improvements are crucial� Figure � is the
error surface and �gure � is a section through the error surfaces� We note the
following�

�� the main improvement in the camera parameter estimation is in the orien
tation angle� de�ned by the viewup vector

�� the erroneous slope has been corrected

�� the error in the global height remains

�� the estimate shows most inaccuracies close to rapid changes in albedo� for
example the white �salt lake� area to the top right of the surface� where
albedo and slope e�ects have not been completely decoupled�

From these numerical experiements� it is clear that the quality of the surface
inference is very sensitive to even small changes in the camera parameters� The
convergence radius of a successful surface reconstruction with respect to the cam
era parameters is quite small� and therefore the improvements our registration
method give� whilst appearing to be small� have a large e�ect on the accuracy
of the surface estimate�



� Conclusions

In this paper we have described a system that takes a set of images and uses
them to infer both the camera parameters and a dense surface model� It does
this by iterative linearization of a model of the image formation process� and
minimization of the error between the whole of the observed and rendered im
ages with respect to the camera and surface parameters� We have demonstrated
the convergence of this system on a set of images rendered from a model of a
region of Nevada� We have demonstrated the need for extremely accurate camera
registrations in order to accurately infer a dense surface model� and have shown
that our registration method achieves this�
Though the computational cost of our system is high compared to a con

ventional �D reconstruction algorithm� it is still of linear complexity� and he
system we have described has many advantages� The accurate� dense surface
reconstruction which also has albedo information can be used for a number of
scienti�c applications� for example spectroscopy for remote mineral type deter
mination� The scale of the surface model that is estimated is decoupled from the
pixel scale of the images via the rendering process� This means that the surface
model scale can be chosen by the user� either on the basis of the use to which
the surface model will be put� or a scale may be chosen which is best justi�ed by
the image data� This is important ! if we have many low resolution images of a
region� the scale of the surface model may be superresolved �where a triangular
surface element projects onto an area smaller than a pixel on the image plane��
If the coverage of the surface by the images is nonuniform� we can specify a
spatiallyvarying mesh for the surface� denser in regions where we have more
images�
The information about the surface captured by the system is not just the

MAP surface estimate� but also the accuracy of the estimate� represented by
the inverse covariance matrix �A in equation ��� Knowing the inverse covariance
matrix allows for recursive updates ! as new images become available the infor
mation they contain can be integrated into the model� In Bayesian terminology�
the posterior distribution from one set of images �de�ned by the MAP estimate
and the inverse covariance matrix� becomes the prior for estimation with new
images�
Finally� we are not restricted to only image data� If data from other sensing

modalities is available �for example� laser altimetry data� then we can add a
term to the likelihood �equation �� for this data� take derivatives of a model
of how this new sensor makes measurements with respect to the surface model
parameters� and our surface model estimate will seamlessly integrate the multi
modal information�
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